DÉPARTEMENT DE GÉNIE CHIMIQUE ÉCOLE POLYTECHNIQUE

4.320 CALCUL DES RÉACTEURS CHIMIQUES EXAMEN FINAL 99

(session automne 99)

Date:

vendredi, 17 décembre 99

Durée:

2h30

Documentation:

Livre permis et calculatrice permise

QUESTION 1 (4 points)

La réaction A B a lieu dans un réacteur discontinu à volume constant.

$$\mathbf{r} = \mathbf{k}_1 \mathbf{C}_{\mathbf{A}} - \mathbf{k}_2 \mathbf{C}_{\mathbf{B}}$$

Température T [K].

A1	A2	E1/R	E2/R	CA _o	C _B _o
Exp(19)	exp(37)	12000	24000	0.9	0.1
[sec-1]	[sec-1]	[-]	[-]	[g.mol/L]	[g.mol/L]

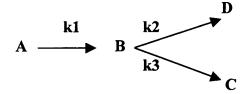
- (a) Quelle sera la température initiale de la réaction pour que la vitesse soit maximum en tout temps.
- (b) Quelle sera la valeur de la vitesse maximum de la réaction lorsque la conversion est de 40%.

EXAMEN FINAL (session automne 99)

QUESTION 2 (4 points)

La réaction
$$A \xrightarrow{k1} B \xrightarrow{k2} C$$

a lieu dans deux réacteurs en série de volume égal. Les réacteurs sont maintenus à une température de 90°C pour maximiser le taux de production du composé B. Le volume de chaque réacteur est de 4 m³ et le débit volumique vo est 0.5 m³/sec.


- (a) Si le premier réacteur est un réacteur adiabatique déterminez la température d'alimentation.
- (b) Puisque le deuxième réacteur est isotherme, déterminez l'échange de chaleur requis pour maintenir ce réacteur à 93 °C.

Données:

vo*Cp	ΔΗ1	ΔН2	k1 et k2	CA _o	Сво	Cc _o
1.4*10 ³	$(-)60*10^3$	$(+)20*10^3$	0.125	1.5	0	0
[kJ/ksec.K]	[kJ/kmol]	[kJ/kmol]	[ksec ⁻¹]	[kmol/m ³]	[kmol/m³]	[kmol/m³]

QUESTION 3 (4 points)

La réaction

a lieu en phase gazeuse dans un réacteur tubulaire isotherme.

Déterminez la concentration de B dans le réacteur à une distance z de 1 mètre de l'entrée.

Données:

k1	k2	k3	Aire	CA _o	V _o
0.01	0.003	0.002	0.2	2	0.4
[sec-1]	[sec-1]	[sec-1]	[m ²]	[gmol/m³]	[m³/sec]

N.B: dX/dt + a*X = b*exp(-c*t) \longrightarrow X = [b/(a-c)]*exp(-c*t) + K*exp(-a*t) où a, b, c sont des constantes, et K déterminé par la condition initiale sur X.

EXAMEN FINAL (session automne 99)

QUESTION 4 (4 points)

La réaction exothermique A 2B a lieu en phase liquide dans deux réacteurs identiques en série opérés à des températures différentes. Le deuxième réacteur est à 120°C et à cette température, la constante de vitesse de réaction est 1.5 [m³/kmol.ksec]. Le taux d'alimentation est de 28 [mol./ksec] avec une concentration en A de 1 [kmol/m³]. Si on impose la contrainte que la vitesse de la réaction soit la même dans les deux réacteurs (r1= r2) et que la conversion à la sortie du deuxième réacteur est de 90%:

- (a) Calculez le volume de chaque réacteur.
- (b) Si l'énergie d'activation est de **84** [kJ/mol], à quelle température doit-on maintenir le premier réacteur?

QUESTION 5 (4 points)

Une réaction en phase liquide A — B a lieu dans un réacteur tubulaire à une pression se 202.2[kPa]. La première section du réacteur est adiabatique jusqu'à ce que la température atteigne 400°C. La température dans la deuxième section est maintenue constante à 400°C.

(a) Calculez le volume requis pour obtenir une conversion de A de 80%.

Données:

Alimentation de A pur au taux	600 [kmole/ksec]
Température d'alimentation	200 [°C]
Volume spécifique de A	0.056 [m³/kmol]
Chaleur se réaction (constante)	(-)15 [kJ/mol]
Chaleurs spécifiques de A et B	42 [J/mole °K]
Constante de vitesse [ksec ⁻¹]	110 + 0.8*(T[°K]-200)

Schéma du réacteur

200°C ____ Adiabatique Isotherme (400 °C)

Charple of

Jamal Chaouki,

Professeur